Determinants of ictal epileptiform patterns in the hippocampal slice.
نویسندگان
چکیده
PURPOSE The transition from an interictal to an ictal pattern of epileptiform activity is a strategic target for antiepileptic drug (AED) action. Both the muscarinic agonist pilocarpine and the selective group I metabotropic glutamate receptor (mGluR) agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) produce prolonged synchronous activity in the hippocampal slice that resembles ictal discharges. We evaluated the role of synaptic mechanisms and release of calcium from intracellular stores in the generation of prolonged ictal oscillations. METHODS Pilocarpine (10 microM) in 7.5 mM[K+]o or DHPG (100 microM) in 5 mM[K+]o artificial cerebrospinal fluid (ACSF) were bath applied to hippocampal slices, and extracellular recordings were made from the CA3 region. The pattern of activity was characterized as ictal if prolonged oscillations of discharges occurred at >2 Hz lasting for >3 s. The pattern of epileptiform activity was characterized and compared with the pattern observed after bath application of pharmacologic agents. RESULTS The AMPA/kainic acid (KA) glutamate receptor blocker DNQX (20 microM) dampened and stopped ictal oscillations; however, antagonism of N-methyl-d-aspartate (NMDA) or gamma-aminobutyric acid (GABAA) receptors had minimal effects on ictal patterns. Ictal discharges were suppressed by dantrolene (30-100 microM), which blocks release of calcium from intracellular stores, or thapsigargin (1-5 microM), which inhibits the adenosine triphosphatase (ATPase) that maintains intracellular calcium stores. The L-type calcium channel antagonist nifedipine (1 microM) blocked ictal activity produced by pilocarpine or DHPG. CONCLUSIONS Ictal discharges produced by pilocarpine or DHPG depended on intact synaptic transmission mediated by AMPA/KA receptors, release of calcium from intracellular stores, and L-type calcium channel activation. The results suggest that muscarinic and group I mGluRs activate a positive-feedback system that creates calcium oscillations and prolonged neuronal synchronization mediated by recurrent excitatory synaptic connections in the CA3 region of the hippocampus.
منابع مشابه
Effect of the Entorhinal Cortex on Ictal Discharges in Low-Mg2+-Induced Epileptic Hippocampal Slice Models
The hippocampus plays an important role in the genesis of mesial temporal lobe epilepsy, and the entorhinal cortex (EC) may affect the hippocampal network activity because of the heavy interconnection between them. However, the mechanism by which the EC affects the discharge patterns and the transmission mode of epileptiform discharges within the hippocampus needs further study. Here, multielec...
متن کاملSuppression of pilocarpine-induced ictal oscillations in the hippocampal slice.
Activation of muscarinic cholinergic receptors produces oscillations in the hippocampal slice that resemble the theta rhythm, but also may produce abnormal synchronous activity that is more characteristic of epileptiform activity. We used pilocarpine, a muscarinic agonist and convulsant, and an elevation in extracellular potassium (5-7.5 mM) to produce synchronous neuronal activity that was pro...
متن کاملCA3-released entorhinal seizures disclose dentate gyrus epileptogenicity and unmask a temporoammonic pathway.
We have investigated the propagation of epileptiform discharges induced by 4-aminopyridine (4-AP, 50 microM) in adult mouse hippocampus-entorhinal cortex slices, before and after Schaffer collateral cut. 4-AP application induced 1) ictal epileptiform activity that disappeared over time and 2) interictal epileptiform discharges, which continued throughout the experiment. Using simultaneous field...
متن کاملIctal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine.
Pilocarpine, a muscarinic agonist, produces status epilepticus that is associated with the later development of chronic recurrent seizures. When applied to rat hippocampal slices, pilocarpine (10 microM) produced brief (<200 ms) epileptiform discharges that resembled interictal activity that occurs between seizures, as well as more prolonged synchronous neuronal activation that lasted seconds (...
متن کاملAstrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices.
The release of glutamate from astrocytes activates synchronous slow inward currents (SICs) in hippocampal pyramidal neurons, which are mediated by the NMDA receptor and represent a nonsynaptic mechanism to promote the synchronization of neuronal activity. Two recent studies demonstrate that SICs generate neuronal paroxysmal depolarizations resembling those typical of interictal epileptiform act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Epilepsia
دوره 43 Suppl 5 شماره
صفحات -
تاریخ انتشار 2002